博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Linux Kernel Development有关内存管理
阅读量:6639 次
发布时间:2019-06-25

本文共 8297 字,大约阅读时间需要 27 分钟。

1 Pages

Page的概念来源为处理器Processor的部件MMU(Memory Management Unit),MMU通过设置好的页表(通过设置CR3寄存器,指向页目录所在的物理内存)对内存进行管理,管理操作包括:

 

a) 建立线性内存地址与物理内存地址的对应关系,即pa()和va()函数;

b) 管理哪些内存页驻存(Resident)于物理内存中,而哪些内存被交换到Swap文件中;

c) 哪些内存页被映射到哪个进程的虚拟地址空间;

d) 管理哪些内存页存储磁盘上(或者文件系统中)文件的缓存;

 

数据结构, struct page

1: /*
2:  * Each physical page in the system has a struct page associated with
3:  * it to keep track of whatever it is we are using the page for at the
4:  * moment. Note that we have no way to track which tasks are using
5:  * a page, though if it is a pagecache page, rmap structures can tell us
6:  * who is mapping it.
7:  */
8: struct page {
9:     unsigned long flags;        /* Atomic flags, some possibly
10:                      * updated asynchronously */
11:     atomic_t _count;        /* Usage count, see below. */
12:     union {
13:         /*
14:          * Count of ptes mapped in
15:          * mms, to show when page is
16:          * mapped & limit reverse map
17:          * searches.
18:          *
19:          * Used also for tail pages
20:          * refcounting instead of
21:          * _count. Tail pages cannot
22:          * be mapped and keeping the
23:          * tail page _count zero at
24:          * all times guarantees
25:          * get_page_unless_zero() will
26:          * never succeed on tail
27:          * pages.
28:          */
29:         atomic_t _mapcount;
30: 
31:         struct {        /* SLUB */
32:             u16 inuse;
33:             u16 objects;
34:         };
35:     };
36:     union {
37:         struct {
38:         unsigned long private;        /* Mapping-private opaque data:
39:                           * usually used for buffer_heads
40:                          * if PagePrivate set; used for
41:                          * swp_entry_t if PageSwapCache;
42:                          * indicates order in the buddy
43:                          * system if PG_buddy is set.
44:                          */
45:         struct address_space *mapping;    /* If low bit clear, points to
46:                          * inode address_space, or NULL.
47:                          * If page mapped as anonymous
48:                          * memory, low bit is set, and
49:                          * it points to anon_vma object:
50:                          * see PAGE_MAPPING_ANON below.
51:                          */
52:         };
53: #if USE_SPLIT_PTLOCKS
54:         spinlock_t ptl;
55: #endif
56:         struct kmem_cache *slab;    /* SLUB: Pointer to slab */
57:         struct page *first_page;    /* Compound tail pages */
58:     };
59:     union {
60:         pgoff_t index;        /* Our offset within mapping. */
61:         void *freelist;        /* SLUB: freelist req. slab lock */
62:     };
63:     struct list_head lru;        /* Pageout list, eg. active_list
64:                      * protected by zone->lru_lock !
65:                      */
66:     /*
67:      * On machines where all RAM is mapped into kernel address space,
68:      * we can simply calculate the virtual address. On machines with
69:      * highmem some memory is mapped into kernel virtual memory
70:      * dynamically, so we need a place to store that address.
71:      * Note that this field could be 16 bits on x86 ... ;)
72:      *
73:      * Architectures with slow multiplication can define
74:      * WANT_PAGE_VIRTUAL in asm/page.h
75:      */
76: #if defined(WANT_PAGE_VIRTUAL)
77:     void *virtual;            /* Kernel virtual address (NULL if
78:                        not kmapped, ie. highmem) */
79: #endif /* WANT_PAGE_VIRTUAL */
80: #ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
81:     unsigned long debug_flags;    /* Use atomic bitops on this */
82: #endif
83: 
84: #ifdef CONFIG_KMEMCHECK
85:     /*
86:      * kmemcheck wants to track the status of each byte in a page; this
87:      * is a pointer to such a status block. NULL if not tracked.
88:      */
89:     void *shadow;
90: #endif
91: };

每个page结构体对象,代表一个物理内存页。

 

x) flags

1: enum pageflags {
2:     PG_locked,        /* Page is locked. Don't touch. */
3:     PG_error,
4:     PG_referenced,
5:     PG_uptodate,
6:     PG_dirty,
7:     PG_lru,
8:     PG_active,
9:     PG_slab,
10:     PG_owner_priv_1,    /* Owner use. If pagecache, fs may use*/
11:     PG_arch_1,
12:     PG_reserved,
13:     PG_private,        /* If pagecache, has fs-private data */
14:     PG_private_2,        /* If pagecache, has fs aux data */
15:     PG_writeback,        /* Page is under writeback */
16: #ifdef CONFIG_PAGEFLAGS_EXTENDED
17:     PG_head,        /* A head page */
18:     PG_tail,        /* A tail page */
19: #else
20:     PG_compound,        /* A compound page */
21: #endif
22:     PG_swapcache,        /* Swap page: swp_entry_t in private */
23:     PG_mappedtodisk,    /* Has blocks allocated on-disk */
24:     PG_reclaim,        /* To be reclaimed asap */
25:     PG_swapbacked,        /* Page is backed by RAM/swap */
26:     PG_unevictable,        /* Page is "unevictable"  */
27: #ifdef CONFIG_MMU
28:     PG_mlocked,        /* Page is vma mlocked */
29: #endif
30: #ifdef CONFIG_ARCH_USES_PG_UNCACHED
31:     PG_uncached,        /* Page has been mapped as uncached */
32: #endif
33: #ifdef CONFIG_MEMORY_FAILURE
34:     PG_hwpoison,        /* hardware poisoned page. Don't touch */
35: #endif
36: #ifdef CONFIG_TRANSPARENT_HUGEPAGE
37:     PG_compound_lock,
38: #endif
39:     __NR_PAGEFLAGS,
40: 
41:     /* Filesystems */
42:     PG_checked = PG_owner_priv_1,
43: 
44:     /* Two page bits are conscripted by FS-Cache to maintain local caching
45:      * state.  These bits are set on pages belonging to the netfs's inodes
46:      * when those inodes are being locally cached.
47:      */
48:     PG_fscache = PG_private_2,    /* page backed by cache */
49: 
50:     /* XEN */
51:     PG_pinned = PG_owner_priv_1,
52:     PG_savepinned = PG_dirty,
53: 
54:     /* SLOB */
55:     PG_slob_free = PG_private,
56: 
57:     /* SLUB */
58:     PG_slub_frozen = PG_active,
59: };

 

x) _count

引用计数,代表有多少处引用到该物理内存页对象。

访问_count时,不要直接访问,调用 page_count()对象进行访问。

 

x) private, mapping

1: struct address_space {
2:     struct inode        *host;        /* owner: inode, block_device */
3:     struct radix_tree_root    page_tree;    /* radix tree of all pages */
4:     spinlock_t        tree_lock;    /* and lock protecting it */
5:     unsigned int        i_mmap_writable;/* count VM_SHARED mappings */
6:     struct prio_tree_root    i_mmap;        /* tree of private and shared mappings */
7:     struct list_head    i_mmap_nonlinear;/*list VM_NONLINEAR mappings */
8:     struct mutex        i_mmap_mutex;    /* protect tree, count, list */
9:     /* Protected by tree_lock together with the radix tree */
10:     unsigned long        nrpages;    /* number of total pages */
11:     pgoff_t            writeback_index;/* writeback starts here */
12:     const struct address_space_operations *a_ops;    /* methods */
13:     unsigned long        flags;        /* error bits/gfp mask */
14:     struct backing_dev_info *backing_dev_info; /* device readahead, etc */
15:     spinlock_t        private_lock;    /* for use by the address_space */
16:     struct list_head    private_list;    /* ditto */
17:     struct address_space    *assoc_mapping;    /* ditto */
18: } __attribute__((aligned(sizeof(long))));

 

x) virtual

虚拟地址,如果是高端内存(HighMem),那么该物理页可能不是长久地映射到内核的内存空间中,所以该字段为NULL。

 

 

struct page

这个结构只是用来描述物理内存页,而与该页中存储的内容无关。

物理内存页的可能属主(Owner)有:

  • user-space processes, 用户态的进程
  • dynamically allocated kernel data, 内核态中动态分配的数据
  • static kernel code, 内核静态代码
  • the page cache,页缓存

 

可能程序员对为每个物理内存页都分配一个struct page而感到吃惊,“那得分配多少内存啊,多浪费啊!”。

实际上以4GB内存为例,大概需要40MB的内存来存储所有struct page的对象,相对于它能够管理的4GB物理内存,还是十分微不足道的。

 

2. Zones

“为什么不利用用户态的3GB的地址空间来映射内核的1GB地址空间映射不下的物理内存?”

因为其实,内核在工作时,是不考虑存在着用户空间的。

内核要处理的任务远比支撑用户空间要复杂。

 

为什么要使用不同的Zone?

有些硬件设备的DMA能访问的内存空间十分有即,比如x86的ISA总线,只能访问0~16M的物理内存,那么如果这段内存被随便地分配掉了,ISA设备就可能无法工作了。

ISA

 

ISA插槽是基于ISA(Industrial Standard Architecture,工业标准结构总线)的扩展插槽,其颜色一般为黑色,比PCI接口插槽要长些,位于主板的最下端。其为8MHz左右,为16位插槽,最大传输率16MB/sec,可插接,声卡,网卡以及所谓的多功能接口卡等扩展插卡。其缺点是CPU资源占用太高,数据传输太小,是已经被淘汰的插槽接口。()

HighMem

对于x86体系结构,以896MB物理内存为界,大于该范围的为高端内存(High Memory),而小于该范围的为低端内存(Low Memory)。

 

内核无法直接映射HighMem区域的物理内存,只能以暂时的方式映射其中一小部分使用,当需要使用其他的高端内存时,可以需要打破之前建立的暂时映射,而用于新的映射,就像是内存交换机制一样。

转载于:https://www.cnblogs.com/long123king/p/3489160.html

你可能感兴趣的文章
netstat命令详解
查看>>
试用 必应bing 缤纷桌面
查看>>
python内置函数4-eval()
查看>>
200-at least a module and a command must be spe...
查看>>
LAMP编译安装过程图示详解
查看>>
MySQL数据库备份总结
查看>>
SCSI硬盘设备到/dev/sd设备的映射关系
查看>>
typedef 的用法
查看>>
mac configure
查看>>
vi 使用整理
查看>>
javadoc生成chm
查看>>
wsgen工具与JAX-B工件(Artifacts)
查看>>
发送邮件脚本
查看>>
源码编译安装apache详解(2014-11-13)
查看>>
getElementByID getElementsByName getElementsByTagName用法详解
查看>>
★★★HEU_KMS_Activator_v7.5 (附详细说明文档)
查看>>
安全管理平台不等于SOC!
查看>>
菜鸟说给菜鸟听之Beginning Linux Programming——Chapter1(1)
查看>>
很大气的后台管理模板
查看>>
支付流程的坑点
查看>>